کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897121 1630631 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ic(q)-convergence of arithmetical functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Ic(q)-convergence of arithmetical functions
چکیده انگلیسی
Let n>1 be an integer with its canonical representation, n=p1α1⋅p2α2⋯pkαk. Put H(n)=max⁡{α1,…,αk}, h(n)=min⁡{α1,…,αk}, ω(n)=k, Ω(n)=α1+⋯+αk, f(n)=∏d|nd and f⁎(n)=f(n)n. Many authors deal with the statistical convergence of these arithmetical functions. For instance the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with Id-convergence, where Id is the ideal of all subsets of positive integers having the asymptotic density zero. In this paper we will study I-convergence of well known arithmetical functions, where I=Ic(q)={A⊆N:∑a∈Aa−q<+∞} is an admissible ideal on N for q∈(0,1〉 such that Ic(q)⊊Id.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 183, February 2018, Pages 74-83
نویسندگان
, , ,