کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897533 1630742 2018 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Infinite-dimensional triangularization
ترجمه فارسی عنوان
مثلثی بی نهایت بعدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
The goal of this paper is to generalize the theory of triangularizing matrices to linear transformations of an arbitrary vector space, without placing any restrictions on the dimension of the space or on the base field. We define a transformation T of a vector space V to be triangularizable if V has a well-ordered basis such that T sends each vector in that basis to the subspace spanned by basis vectors no greater than it. We then show that the following conditions (among others) are equivalent: (1) T is triangularizable, (2) every finite-dimensional subspace of V is annihilated by f(T) for some polynomial f that factors into linear terms, (3) there is a maximal well-ordered set of subspaces of V that are invariant under T, (4) T can be put into a crude version of the Jordan canonical form. We also show that any finite collection of commuting triangularizable transformations is simultaneously triangularizable, we describe the closure of the set of triangularizable transformations in the standard topology on the algebra of all transformations of V, and we extend to transformations that satisfy a polynomial the classical fact that the double-centralizer of a matrix is the algebra generated by that matrix.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 7, July 2018, Pages 1529-1547
نویسندگان
,