کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897552 | 1630742 | 2018 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Minimal star-varieties of polynomial growth and bounded colength
ترجمه فارسی عنوان
حداقل تعداد ستاره ای از رشد چندجملهای و رنگی محدود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
Let V be a variety of associative algebras with involution â over a field F of characteristic zero. Giambruno and Mishchenko proved in [6] that the â-codimension sequence of V is polynomially bounded if and only if V does not contain the commutative algebra D=FâF, endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4Ã4 upper triangular matrices, endowed with the reflection involution. As a consequence the algebras D and M generate the only varieties of almost polynomial growth. In [20] the authors completely classify all subvarieties and all minimal subvarieties of the varieties varâ(D) and varâ(M). In this paper we exhibit the decompositions of the â-cocharacters of all minimal subvarieties of varâ(D) and varâ(M) and compute their â-colengths. Finally we relate the polynomial growth of a variety to the â-colengths and classify the varieties such that their sequence of â-colengths is bounded by three.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 7, July 2018, Pages 1765-1785
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 7, July 2018, Pages 1765-1785
نویسندگان
Daniela La Mattina, Thais Silva do Nascimento, Ana Cristina Vieira,