کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898278 | 1631336 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classification of homogeneous almost α-coKähler three-manifolds
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An orientable Riemannian three-manifold (M,g) admits an almost α-coKähler structure with g as a compatible metric if and only if M admits a foliation, defined by a unit closed 1-form, of constant mean curvature. Then, we show that a simply connected homogeneous almost α-coKähler three-manifold is either a Riemannian product of type RÃS2(k2), equipped with its standard coKähler structure, or it is a semidirect product Lie group G=R2âAR equipped with a left invariant almost α-coKähler structure. Moreover, we distinguish the several spaces of this classification by using the Gaussian curvature KG of the canonical foliation. In particular, RÃS2(k2) is the only simply connected homogeneous almost α-coKähler three-manifolds whose canonical foliation has Gaussian curvature KG>0.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 59, August 2018, Pages 66-90
Journal: Differential Geometry and its Applications - Volume 59, August 2018, Pages 66-90
نویسندگان
Domenico Perrone,