کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898370 | 1631339 | 2018 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Homogeneity for a class of Riemannian quotient manifolds
ترجمه فارسی عنوان
یکنواختی برای یک کلاس از چند فاکتورهای ریمانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
We study Riemannian coverings Ï:MËâÎ\MË where MË is a normal homogeneous space G/K1 fibered over another normal homogeneous space M=G/K and K is locally isomorphic to a nontrivial product K1ÃK2. The most familiar such fibrations Ï:MËâM are the natural fibrations of Stiefel manifolds SO(n1+n2)/SO(n1) over Grassmann manifolds SO(n1+n2)/[SO(n1)ÃSO(n2)] and the twistor space bundles over quaternionic symmetric spaces (= quaternion-Kaehler symmetric spaces = Wolf spaces). The most familiar of these coverings Ï:MËâÎ\MË are the universal Riemannian coverings of spherical space forms. When M=G/K is reasonably well understood, in particular when G/K is a Riemannian symmetric space or when K is a connected subgroup of maximal rank in G, we show that the Homogeneity Conjecture holds for MË. In other words we show that Î\MË is homogeneous if and only if every γâÎ is an isometry of constant displacement. In order to find all the isometries of constant displacement on MË we work out the full isometry group of MË, extending Ãlie Cartan's determination of the full group of isometries of a Riemannian symmetric space. We also discuss some pseudo-Riemannian extensions of our results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 56, February 2018, Pages 355-372
Journal: Differential Geometry and its Applications - Volume 56, February 2018, Pages 355-372
نویسندگان
Joseph A. Wolf,