کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898370 1631339 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Homogeneity for a class of Riemannian quotient manifolds
ترجمه فارسی عنوان
یکنواختی برای یک کلاس از چند فاکتورهای ریمانی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We study Riemannian coverings φ:M˜→Γ\M˜ where M˜ is a normal homogeneous space G/K1 fibered over another normal homogeneous space M=G/K and K is locally isomorphic to a nontrivial product K1×K2. The most familiar such fibrations π:M˜→M are the natural fibrations of Stiefel manifolds SO(n1+n2)/SO(n1) over Grassmann manifolds SO(n1+n2)/[SO(n1)×SO(n2)] and the twistor space bundles over quaternionic symmetric spaces (= quaternion-Kaehler symmetric spaces = Wolf spaces). The most familiar of these coverings φ:M˜→Γ\M˜ are the universal Riemannian coverings of spherical space forms. When M=G/K is reasonably well understood, in particular when G/K is a Riemannian symmetric space or when K is a connected subgroup of maximal rank in G, we show that the Homogeneity Conjecture holds for M˜. In other words we show that Γ\M˜ is homogeneous if and only if every γ∈Γ is an isometry of constant displacement. In order to find all the isometries of constant displacement on M˜ we work out the full isometry group of M˜, extending Élie Cartan's determination of the full group of isometries of a Riemannian symmetric space. We also discuss some pseudo-Riemannian extensions of our results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 56, February 2018, Pages 355-372
نویسندگان
,