کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898756 1631498 2018 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Differential Galois theory and non-integrability of planar polynomial vector fields
ترجمه فارسی عنوان
تئوری دیفرانسیل گالوئیس و عدم انعطاف پذیری فیلدهای بردار چند جمله ای مسطح
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the “Risch algorithm”. In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 264, Issue 12, 15 June 2018, Pages 7183-7212
نویسندگان
, , , ,