کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8899297 1631544 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Metrizability of minimal and unbounded topologies
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Metrizability of minimal and unbounded topologies
چکیده انگلیسی
In 1987, I. Labuda proved a general representation theorem that, as a special case, shows that the topology of local convergence in measure is the minimal topology on Orlicz spaces and L∞. Minimal topologies connect with the recent, and actively studied, subject of “unbounded convergences”. In fact, a Hausdorff locally solid topology τ on a vector lattice X is minimal iff it is Lebesgue and the τ and unbounded τ-topologies agree. In this paper, we study metrizability, submetrizability, and local boundedness of the unbounded topology, uτ, associated to τ on X. Regarding metrizability, we prove that if τ is a locally solid metrizable topology then uτ is metrizable iff there is a countable set A with I(A)‾τ=X. We prove that a minimal topology is metrizable iff X has the countable sup property and a countable order basis. In line with the idea that uo-convergence generalizes convergence almost everywhere, we prove relations between minimal topologies and uo-convergence that generalize classical relations between convergence almost everywhere and convergence in measure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 466, Issue 1, 1 October 2018, Pages 144-159
نویسندگان
, ,