کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8899731 | 1631549 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Ground state solutions for a class of Choquard equations with potential vanishing at infinity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper is dedicated to studying the following nonlinear Choquard equationââ³u+V(x)u=(â«RNQ(y)F(u(y))|xây|μdy)Q(x)f(u),uâD1,2(RN), where Nâ¥3, μâ(0,N), VâC(RN,[0,â)), QâC(RN,(0,â)), fâC(R,R) and F(t)=â«0tf(s)ds. By combining the non-Nehari manifold approach with some new inequalities, we prove that the above equation has a ground state solution in the case when V(x)â0 as |x|ââ, where the strict monotonicity condition on f is not required. Moreover, by using perturbation method, we obtain the existence of a least energy solution in the zero mass case, i.e. V=0, where f satisfies the condition that F(t0)â 0 for some t0âR instead of the usual Ambrosetti-Rabinowitz type condition. These results extend the ones in Alves, Figueiredo and Yang (2015) [1] and some related literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 463, Issue 2, 15 July 2018, Pages 880-894
Journal: Journal of Mathematical Analysis and Applications - Volume 463, Issue 2, 15 July 2018, Pages 880-894
نویسندگان
Sitong Chen, Shuai Yuan,