| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8899836 | 1631552 | 2018 | 19 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												The Ritt property of subordinated operators in the group case
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Let G be a locally compact abelian group, let ν be a regular probability measure on G, let X be a Banach space, let Ï:GâB(X) be a bounded strongly continuous representation. Consider the average (or subordinated) operator S(Ï,ν)=â«GÏ(t)dν(t):XâX. We show that if X is a UMD Banach lattice and ν has bounded angular ratio, then S(Ï,ν) is a Ritt operator with a bounded Hâ functional calculus. Next we show that if ν is the square of a symmetric probability measure and X is K-convex, then S(Ï,ν) is a Ritt operator. We further show that this assertion is false on any non K-convex space X.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 462, Issue 1, 1 June 2018, Pages 191-209
											Journal: Journal of Mathematical Analysis and Applications - Volume 462, Issue 1, 1 June 2018, Pages 191-209
نویسندگان
												Florence Lancien, Christian Le Merdy,