کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8900014 | 1631554 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A class of multi-marginal c-cyclically monotone sets with explicit c-splitting potentials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multi-marginal optimal transport plans are concentrated on c-splitting sets. It is known that, similar to the two-marginal case, c-splitting sets are c-cyclically monotone. Within a suitable framework, the converse implication was very recently established by Griessler. However, for an arbitrary cost c, given a multi-marginal c-cyclically monotone set, the question whether there exists an analogous explicit construction to the one from the two-marginal case of c-splitting potentials is still open. When the margins are one-dimensional and the cost belongs to a certain class, Carlier proved that the two-marginal projections of a c-splitting set are monotone. For arbitrary products of sets equipped with cost functions which are sums of two-marginal costs, we show that the two-marginal monotonicity condition is a sufficient condition which does give rise to an explicit construction of c-splitting potentials. Our condition is, in principle, easier to verify than the one of multi-marginal c-cyclic monotonicity. Various examples illustrate our results. We show that, in general, our condition is sufficient; however, it is not necessary. On the other hand, we conclude that when the margins are one-dimensional equipped with classical cost functions, our condition is a characterization of c-splitting sets and extends classical convex analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 461, Issue 1, 1 May 2018, Pages 333-348
Journal: Journal of Mathematical Analysis and Applications - Volume 461, Issue 1, 1 May 2018, Pages 333-348
نویسندگان
Sedi Bartz, Heinz H. Bauschke, Xianfu Wang,