کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8900030 | 1631554 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Weak* fixed point property of reduced Fourier-Stieltjes algebra and generalization of Baggett's theorem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we show that if the reduced Fourier-Stieltjes algebra BÏ(G) of a second countable locally compact group G has either weak* fixed point property or asymptotic center property, then G is compact. As a result, we give affirmative answers to open problems raised by Fendler and et al. in 2013. We then conclude that a second countable group with a discrete reduced dual must be compact. This generalizes a theorem of Baggett. We also construct a compact scattered Hausdorff space Ω for which the dual of the scattered C*-algebra C(Ω) lacks weak* fixed point property. The C*-algebra C(Ω) provides a negative answer to a question of Randrianantoanina in 2010. In addition, we prove a variant of Bruck's generalized fixed point theorem for the preduals of von Neumann algebras. Furthermore, we give some examples emphasizing that the conditions in Bruck's generalized conjecture (BGC) can not be weakened any more.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 461, Issue 1, 1 May 2018, Pages 451-460
Journal: Journal of Mathematical Analysis and Applications - Volume 461, Issue 1, 1 May 2018, Pages 451-460
نویسندگان
Fouad Naderi,