کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8900240 1631558 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The optimal upper and lower bounds of convergence rates for the 3D Navier-Stokes equations under large initial perturbation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The optimal upper and lower bounds of convergence rates for the 3D Navier-Stokes equations under large initial perturbation
چکیده انگلیسی
This paper is concerned with the optimal algebraic convergence rates for Leray weak solutions of the 3D Navier-Stokes equations in Morrey space. It is shown that if the global Leray weak solution u(x,t) of the 3D Navier-Stokes equations satisfies∇u∈Lr(0,∞;M˙p,q(R3)),2r+3p=2,322, then even for the large initial perturbation, every weak solution v(x,t) of the perturbed Navier-Stokes equations converges algebraically to u(x,t) with the optimal upper and lower boundsC1(1+t)−γ2≤‖v(t)−u(t)‖L2≤C2(1+t)−γ2,for large t>1,2<γ<52. The findings are mainly based on the developed Fourier splitting methods and iterative process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 459, Issue 1, 1 March 2018, Pages 437-452
نویسندگان
, , ,