کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8900325 1631560 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Hausdorff dimension of level sets described by Erdös-Rényi average
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The Hausdorff dimension of level sets described by Erdös-Rényi average
چکیده انگلیسی
Let 0≤α≤1 and ϕ be an integer function defined on N∖{0} satisfying 1≤ϕ(n)≤n. Define the level setERϕ(α)={x∈[0,1]:limn→∞⁡An,ϕ(n)(x)=α}, where An,ϕ(n)(x) is the (n,ϕ(n))-Erdös-Rényi average of x∈[0,1]. In this paper, we will give descriptions for the Hausdorff dimension of ERϕ(α) under the assumption ϕ(n)→∞ as n→∞, which complement simultaneously an early classic result of Besicovitch and the new strong law of large number established by P. Erdös and A. Rényi. Moreover, for the case ϕ(n)=M ultimately, where M≥1 is an integer, the Hausdorff dimension of ERϕ(α) is also determined by us in the last section.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 458, Issue 1, 1 February 2018, Pages 464-480
نویسندگان
, , ,