کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
925350 | 921481 | 2013 | 9 صفحه PDF | دانلود رایگان |

Subcortical structures are a key component of bilingual language processing. For instance, there is now evidence that the head of the left caudate is involved in controlling languages in bilingual individuals. On the other hand, the left putamen is hypothesized to be involved in articulatory processes but little is known on its engagement in bilingual language processing. Here, our hypothesis was that the left putamen of multilinguals is engaged when producing words in the less proficient language. We investigated this issue with event-related functional Magnetic Resonance (er-fMRI) in a group of multilinguals (n = 14) and in monolinguals (n = 14) during a picture-naming task. Further, we hypothesized increased grey matter density in the left putamen as an effect of experience since multilinguals constantly face a major articulatory load (i.e., speaking multiple languages) during life. To test these hypotheses we measured structural differences between multilinguals and monolinguals using voxel-based morphometry (VBM).Our results indicate that multilinguals have increased activation in the left putamen for a non-native language, but only if they are not highly proficient in that language. In addition, we found increased grey matter density in the left putamen of multilinguals compared to monolinguals. These findings highlight that the multilingual brain handles a complex articulatory repertoire (i.e., dealing with multiple languages) by inducing structural plasticity in the left putamen.
► The bilingual brain handles a complex articulatory repertoire by structural plasticity.
► Multilingualism induces grey matter changes in the left putamen.
► Left putaminal activity is necessary only for low proficiency second languages.
Journal: Brain and Language - Volume 125, Issue 3, June 2013, Pages 307–315