کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
936913 | 1475206 | 2009 | 8 صفحه PDF | دانلود رایگان |

Previous studies have demonstrated that treatment with 17β-estradiol (E2) improves both spatial and nonspatial memory in young female mice. Still unclear, however, are the molecular mechanisms underlying the beneficial effects of E2 on memory. We have previously demonstrated that a single post-training intraperitoneal (i.p.) injection of 0.2 mg/kg E2 can enhance hippocampal-dependent spatial and object memory consolidation (e.g., Gresack & Frick, 2006b). Therefore, in the present study, we performed a microarray analysis on the dorsal hippocampi of 4-month-old female mice injected i.p. with vehicle or 0.2 mg/kg E2. Genes were considered differentially expressed following E2 treatment if they showed a greater than 2-fold change in RNA expression levels compared to controls. Overall, out of a total of approximately 25,000 genes represented on the array, 204 genes showed altered mRNA expression levels upon E2 treatment, with 111 up-regulated and 93 down-regulated. Of these, 17 of the up-regulated and 6 of the down-regulated genes are known to be involved in learning and memory. mRNA expression changes in 5 of the genes were confirmed by real-time quantitative PCR analysis, and protein changes in these same genes were confirmed by Western blot analysis: Hsp70, a heat shock protein known to be estrogen responsive; Igfbp2, an IGF-I binding protein; Actn4, an actin binding protein involved in protein trafficking; Tubb2a, the major component of microtubules; and Snap25, a synaptosome-specific protein required for neurotransmitter release. The types of genes altered indicate that E2 may induce changes in the structural mechanics of cells within the dorsal hippocampus that could be conducive to promoting memory consolidation.
Journal: Neurobiology of Learning and Memory - Volume 91, Issue 3, March 2009, Pages 315–322