کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9409372 1613302 2005 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tramadol enhances hepatic insulin sensitivity via enhancing insulin signaling cascade in the cerebral cortex and hypothalamus of 90% pancreatectomized rats
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله
Tramadol enhances hepatic insulin sensitivity via enhancing insulin signaling cascade in the cerebral cortex and hypothalamus of 90% pancreatectomized rats
چکیده انگلیسی
Clinical observation found that tramadol, mu opioid receptor (MOR) agonist and serotonin (5-HT) reuptake inhibitor, has a hypoglycemic effect in type 2 diabetes patients. The mechanism of its hypoglycemic effect has not been fully defined. This study showed that tramadol activated a neuronal insulin signaling cascade by increasing the induction of insulin receptor substrate-2 expression in primary cultured neuronal cells while this activation was suppressed by naloxone (MOR inhibitor) and dexamethasone (non-specific inhibitor of MOR and 5-HT receptor, DEX). Glucose utilization of the cerebral cortex and hypothalamus was enhanced by a 4-week-tramadol administration in 90% pancreatectomized rats, in vivo, as assessed by measurement of glucokinase expression and glycogen deposition via activating insulin signaling cascade such as neuronal cells in vitro. This improvement was almost completely suppressed by naloxone as well as DEX. Tramadol decreased fasted serum glucose levels, favored an increase in the glucose infusion rate and reduced endogeneous hepatic glucose production after 4 weeks of treatment. However, tramadol did not modulate hepatic glucose output directly, as exhibited by liver perfusion, suggesting tramadol altered hepatic glucose utilization through the effect of organs other than the liver, possibly the central nervous system. The data suggest that tramadol ameliorates peripheral glucose metabolism through central activation of MOR, and that central and peripheral glucose metabolism are therefore likely to be interrelated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research Bulletin - Volume 67, Issues 1–2, 30 September 2005, Pages 77-86
نویسندگان
, , ,