کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9492839 | 1333836 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spherical distributions: Schoenberg (1938) revisited
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An m-dimensional random vector X is said to have a spherical distribution if and only if its characteristic function is of the form Ï(â¥tâ¥), where tâRm, â¥.⥠denotes the usual Euclidean norm, and Ï is a characteristic function on R. A more intuitive description is that the probability density function of X is constant on spheres. The class Φm of these characteristic functions Ï is fundamental in the theory of spherical distributions on Rm. An important result, which was originally proved by Schoenberg (Ann. Math. 39(4) (1938) 811-841), is that the underlying characteristic function Ï of a spherically distributed random m-vector X belongs to Φâ if and only if the distribution of X is a scale mixture of normal distributions. A proof in the context of exchangeability has been given by Kingman (Biometrika 59 (1972) 492-494). Using probabilistic tools, we will give an alternative proof in the spirit of Schoenberg we think is more elegant and less complicated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expositiones Mathematicae - Volume 23, Issue 3, 15 September 2005, Pages 281-287
Journal: Expositiones Mathematicae - Volume 23, Issue 3, 15 September 2005, Pages 281-287
نویسندگان
A.G.M. Steerneman, F. van Perlo-ten Kleij,