کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9496417 1335818 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrality at a prime for global fields and the perfect closure of global fields of characteristic p>2
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Integrality at a prime for global fields and the perfect closure of global fields of characteristic p>2
چکیده انگلیسی
Let k be a global field and p any nonarchimedean prime of k. We give a new and uniform proof of the well known fact that the set of all elements of k which are integral at p is diophantine over k. Let kperf be the perfect closure of a global field of characteristic p>2. We also prove that the set of all elements of kperf which are integral at some prime q of kperf is diophantine over kperf, and this is the first such result for a field which is not finitely generated over its constant field. This is related to Hilbert's Tenth Problem because for global fields k of positive characteristic, giving a diophantine definition of the set of elements that are integral at a prime is one of two steps needed to prove that Hilbert's Tenth Problem for k is undecidable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 114, Issue 1, September 2005, Pages 170-181
نویسندگان
,