کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9496512 | 1335840 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonsingularity of least common multiple matrices on gcd-closed sets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let n be a positive integer. Let S={x1,â¦,xn} be a set of n distinct positive integers. The least common multiple (LCM) matrix on S, denoted by [S], is defined to be the nÃn matrix whose (i,j)-entry is the least common multiple [xi,xj] of xi and xj. The set S is said to be gcd-closed if for any xi,xjâS,(xi,xj)âS. For an integer m>1, let Ï(m) denote the number of distinct prime factors of m. Define Ï(1)=0. In 1997, Qi Sun conjectured that if S is a gcd-closed set satisfying maxxâS{Ï(x)}⩽2, then the LCM matrix [S] is nonsingular. In this paper, we settle completely Sun's conjecture. We show the following result: (i). If S is a gcd-closed set satisfying maxxâS{Ï(x)}⩽2, then the LCM matrix [S] is nonsingular. Namely, Sun's conjecture is true; (ii). For each integer r⩾3, there exists a gcd-closed set S satisfying maxxâS{Ï(x)}=r, such that the LCM matrix [S] is singular.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 113, Issue 1, July 2005, Pages 1-9
Journal: Journal of Number Theory - Volume 113, Issue 1, July 2005, Pages 1-9
نویسندگان
Shaofang Hong,