کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9496568 1335845 2005 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applications of non-Archimedean integration to the L-series of τ-sheaves
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Applications of non-Archimedean integration to the L-series of τ-sheaves
چکیده انگلیسی
Let F̲ be a τ-sheaf. Building on previous work of Drinfeld, Anderson, Taguchi, and Wan, Böckle and Pink (A cohomological theory of crystals over function fields, in preparation), develop a cohomology theory for F̲. Böckle (Math. Ann. 323 (2002) 737) uses this theory to establish the analytic continuation of the L-series associated to F̲ (which is a characteristic p-valued “Dirichlet series”) and the logarithmic growth of the degrees of its special polynomials. In this paper, we shall show that this logarithmic growth is all that is needed to analytically continue the original L-series as well as all associated partial L-series. Moreover, we show that the degrees of the special polynomials attached to the partial L-series also grow logarithmically. Our tools are Böckle's original results, non-Archimedean integration, and the very strong estimates of Amice (Bull. Soc. Math. France 92 (1964) 117). Along the way, we define certain natural modules associated with non-Archimedean measures (in the characteristic 0 case as well as in characteristic p).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 110, Issue 1, January 2005, Pages 83-113
نویسندگان
,