کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9502696 1339537 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Totally hereditarily normaloid operators and Weyl's theorem for an elementary operator
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Totally hereditarily normaloid operators and Weyl's theorem for an elementary operator
چکیده انگلیسی
A Hilbert space operator T∈B(H) is hereditarily normaloid (notation: T∈HN) if every part of T is normaloid. An operator T∈HN is totally hereditarily normaloid (notation: T∈THN) if every invertible part of T is normaloid. We prove that THN-operators with Bishop's property (β), also THN-contractions with a compact defect operator such that T−1(0)⊆T∗−1(0) and non-zero isolated eigenvalues of T are normal, are not supercyclic. Take A and B in THN and let dAB denote either of the elementary operators in B(B(H)): ΔAB and δAB, where ΔAB(X)=AXB−X and δAB(X)=AX−XB. We prove that if non-zero isolated eigenvalues of A and B are normal and B−1(0)⊆B∗−1(0), then dAB is an isoloid operator such that the quasi-nilpotent part H0(dAB−λ) of dAB−λ equals (dAB−λ)−1(0) for every complex number λ which is isolated in σ(dAB). If, additionally, dAB has the single-valued extension property at all points not in the Weyl spectrum of dAB, then dAB, and the conjugate operator dAB∗, satisfy Weyl's theorem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 312, Issue 2, 15 December 2005, Pages 502-513
نویسندگان
, ,