کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9502777 | 1631576 | 2005 | 12 صفحه PDF | دانلود رایگان |

0, there is a constant c<â with â«D|u(x)|pdist(x,âD)βâpdx⩽câ«D|âu(x)|pdist(x,âD)βdx for all uâC0â(D). We show that if D is merely assumed to be a bounded domain in Rn that satisfies a Whitney cube-counting condition with exponent λ and has plump complement, then the same inequality holds with β0 now taken to be p(nâλ)(n+p)n(p+2n). Further, we extend the known results (see [H. Brezis, M. Marcus, Hardy's inequalities revisited, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997-1998) 217-237; M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, A geometrical version of Hardy's inequality, J. Funct. Anal. 189 (2002) 537-548; J. Tidblom, A geometrical version of Hardy's inequality for W1,p(Ω), Proc. Amer. Math. Soc. 132 (2004) 2265-2271]) concerning the improved Hardy inequality â«D|u(x)|pdist(x,âD)âpdx+|D|âp/nâ«D|u(x)|pdx⩽câ«D|âu(x)|pdx,c=c(n,p), by showing that the class of domains for which the inequality holds is larger than that of all bounded convex domains.
Journal: Journal of Mathematical Analysis and Applications - Volume 310, Issue 2, 15 October 2005, Pages 424-435