کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9502898 1339548 2005 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weyl's theorem for algebraically totally hereditarily normaloid operators
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Weyl's theorem for algebraically totally hereditarily normaloid operators
چکیده انگلیسی
A Banach space operator T∈B(X) is said to be totally hereditarily normaloid, T∈THN, if every part of T is normaloid and every invertible part of T has a normaloid inverse. The operator T is said to be an H(q) operator for some integer q⩾1, T∈H(q), if the quasi-nilpotent part H0(T−λ)=(T−λ)−q(0) for every complex number λ. It is proved that if T is algebraically H(q), or T is algebraically THN and X is separable, then f(T) satisfies Weyl's theorem for every function f analytic in an open neighborhood of σ(T), and T∗ satisfies a-Weyl's theorem. If also T∗ has the single valued extension property, then f(T) satisfies a-Weyl's theorem for every analytic function f which is non-constant on the connected components of the open neighborhood of σ(T) on which it is defined.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 308, Issue 2, 15 August 2005, Pages 578-587
نویسندگان
,