کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9502903 | 1339548 | 2005 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlocal symmetries and recursion operators: Partial differential and differential-difference equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A systematic method to derive the nonlocal symmetries for partial differential and differential-difference equations with two independent variables is presented and shown that the Korteweg-de Vries (KdV) and Burger's equations, Volterra and relativistic Toda (RT) lattice equations admit a sequence of nonlocal symmetries. An algorithm, exploiting the obtained nonlocal symmetries, is proposed to derive recursion operators involving nonlocal variables and illustrated it for the KdV and Burger's equations, Volterra and RT lattice equations and shown that the former three equations admit factorisable recursion operators while the RT lattice equation possesses (2Ã2) matrix factorisable recursion operator. The existence of nonlocal symmetries and the corresponding recursion operator of partial differential and differential-difference equations does not always determine their mathematical structures, for example, bi-Hamiltonian representation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 308, Issue 2, 15 August 2005, Pages 636-655
Journal: Journal of Mathematical Analysis and Applications - Volume 308, Issue 2, 15 August 2005, Pages 636-655
نویسندگان
R. Sahadevan, S. Khousalya, L. Nalini Devi,