کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9503051 1339553 2005 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the regularity analysis of interpolatory Hermite subdivision schemes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
On the regularity analysis of interpolatory Hermite subdivision schemes
چکیده انگلیسی
It is well known that the critical Hölder regularity of a subdivision schemes can typically be expressed in terms of the joint-spectral radius (JSR) of two operators restricted to a common finite-dimensional invariant subspace. In this article, we investigate interpolatory Hermite subdivision schemes in dimension one and specifically those with optimal accuracy orders. The latter include as special cases the well-known Lagrange interpolatory subdivision schemes by Deslauriers and Dubuc. We first show how to express the critical Hölder regularity of such a scheme in terms of the joint-spectral radius of a matrix pair {F0,F1} given in a very explicit form. While the so-called finiteness conjecture for JSR is known to be not true in general, we conjecture that for such matrix pairs arising from Hermite interpolatory schemes of optimal accuracy orders a “strong finiteness conjecture” holds: ρ(F0,F1)=ρ(F0)=ρ(F1). We prove that this conjecture is a consequence of another conjectured property of Hermite interpolatory schemes which, in turn, is connected to a kind of positivity property of matrix polynomials. We also prove these conjectures in certain new cases using both time and frequency domain arguments; our study here strongly suggests the existence of a notion of “positive definiteness” for non-Hermitian matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 302, Issue 1, 1 February 2005, Pages 201-216
نویسندگان
,