کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9503051 | 1339553 | 2005 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the regularity analysis of interpolatory Hermite subdivision schemes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that the critical Hölder regularity of a subdivision schemes can typically be expressed in terms of the joint-spectral radius (JSR) of two operators restricted to a common finite-dimensional invariant subspace. In this article, we investigate interpolatory Hermite subdivision schemes in dimension one and specifically those with optimal accuracy orders. The latter include as special cases the well-known Lagrange interpolatory subdivision schemes by Deslauriers and Dubuc. We first show how to express the critical Hölder regularity of such a scheme in terms of the joint-spectral radius of a matrix pair {F0,F1} given in a very explicit form. While the so-called finiteness conjecture for JSR is known to be not true in general, we conjecture that for such matrix pairs arising from Hermite interpolatory schemes of optimal accuracy orders a “strong finiteness conjecture” holds: Ï(F0,F1)=Ï(F0)=Ï(F1). We prove that this conjecture is a consequence of another conjectured property of Hermite interpolatory schemes which, in turn, is connected to a kind of positivity property of matrix polynomials. We also prove these conjectures in certain new cases using both time and frequency domain arguments; our study here strongly suggests the existence of a notion of “positive definiteness” for non-Hermitian matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 302, Issue 1, 1 February 2005, Pages 201-216
Journal: Journal of Mathematical Analysis and Applications - Volume 302, Issue 1, 1 February 2005, Pages 201-216
نویسندگان
Thomas P.-Y. Yu,