کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9503079 | 1339554 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On a nonlinear eigenvalue problem in ODE
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we shall study the following variant of the logistic equation with diffusion: âduâ³(x)=g(x)u(x)âu2(x) for xâR. The unknown function u corresponds to the size of a population. The function g corresponds to the birth (or death) rate of the population which takes on both positive and negative values on R; the âu2 term in the equation corresponds to the fact that the population is self-limiting and the parameter d>0 corresponds to the rate at which the population diffuses. We have obtained our results by the construction of sub and supersolutions and the study of asymptotic properties of solutions. Our results show the interplay between the birth rate of the species and the extent of diffusion in determining the existence or nonexistence of nontrivial steady-state distributions of population.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 303, Issue 1, 1 March 2005, Pages 342-349
Journal: Journal of Mathematical Analysis and Applications - Volume 303, Issue 1, 1 March 2005, Pages 342-349
نویسندگان
G.A. Afrouzi,