کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9651034 | 666442 | 2005 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A database clustering methodology and tool
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper focuses on identifying those discrepancies and on analyzing their impact on the application of clustering techniques to databases. We are particularly interested in the question on how clustering algorithms can be generalized to become more directly applicable to real-world databases. The paper introduces methodologies, techniques, and tools that serve this purpose. We propose a data set representation framework for database clustering that characterizes objects to be clustered through sets of tuples, and introduce preprocessing techniques and tools to generate object views based on this framework. Moreover, we introduce bag-oriented similarity measures and clustering algorithms that are suitable for our proposed data set representation framework. We also demonstrate that our approach is capable of dealing with relationship information commonly found in databases through the bag-oriented clustering. We also argue that our bag-oriented data representation framework is more suitable for database clustering than the commonly used flat file format and produce better quality of clusters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 171, Issues 1â3, 4 March 2005, Pages 29-59
Journal: Information Sciences - Volume 171, Issues 1â3, 4 March 2005, Pages 29-59
نویسندگان
Tae-Wan Ryu, Christoph F. Eick,