کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9702595 | 1462627 | 2005 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computation of the normal forms for general M-DOF systems using multiple time scales. Part I: autonomous systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper is concerned with the symbolic computation of the normal forms of general multiple-degree-of-freedom oscillating systems. A perturbation technique based on the method of multiple time scales, without the application of center manifold theory, is generalized to develop efficient algorithms for systematically computing normal forms up to any high order. The equivalence between the perturbation technique and Poincaré normal form theory is proved, and general solution forms are established for solving ordered perturbation equations. A number of cases are considered, including the non-resonance, general resonance, resonant case containing 1:1 primary resonance, and combination of resonance with non-resonance. “Automatic” Maple programs have been developed which can be executed by a user without knowing computer algebra and Maple. Examples are presented to show the efficiency of the perturbation technique and the convenience of symbolic computation. This paper is focused on autonomous systems, and non-autonomous systems are considered in a companion paper.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 10, Issue 8, December 2005, Pages 869-905
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 10, Issue 8, December 2005, Pages 869-905
نویسندگان
Pei Yu, Songhui Zhu,