کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
974526 932984 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs
چکیده انگلیسی

Personalized recommender systems are confronting great challenges of accuracy, diversification and novelty, especially when the data set is sparse and lacks accessorial information, such as user profiles, item attributes and explicit ratings. Collaborative tags contain rich information about personalized preferences and item contents, and are therefore potential to help in providing better recommendations. In this article, we propose a recommendation algorithm based on an integrated diffusion on user–item–tag tripartite graphs. We use three benchmark data sets, Del.icio.us, MovieLens and BibSonomy, to evaluate our algorithm. Experimental results demonstrate that the usage of tag information can significantly improve accuracy, diversification and novelty of recommendations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 389, Issue 1, 1 January 2010, Pages 179–186
نویسندگان
, , ,