کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
974584 1480154 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finite sample properties of power-law cross-correlations estimators
ترجمه فارسی عنوان
خصوصیات نمونه محدودی از برآوردگرهای همبستگی قدرت قانون
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی


• Finite sample properties of power-law cross-correlations estimators are studied.
• DCCA, DMCA and HXA methods are compared.
• Each of the methods is better suited for specific characteristics.
• There is no clear winner.

We study finite sample properties of estimators of power-law cross-correlations–detrended cross-correlation analysis (DCCA), height cross-correlation analysis (HXA) and detrending moving-average cross-correlation analysis (DMCA)–with a special focus on short-term memory bias as well as power-law coherency. We present a broad Monte Carlo simulation study that focuses on different time series lengths, specific methods’ parameter setting, and memory strength. We find that each method is best suited for different time series dynamics so that there is no clear winner between the three. The method selection should be then made based on observed dynamic properties of the analyzed series.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 419, 1 February 2015, Pages 513–525
نویسندگان
,