کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
974783 | 1480177 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unfolding of the spectrum for chaotic and mixed systems
ترجمه فارسی عنوان
باز کردن طیف برای سیستم های هرج و مرج و مخلوط
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تئوری ماتریس تصادفی، انحلال طیف، سیستم های مخلوط، توزیع فاصله، سطح واریانس تعداد، چگالی سطح،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
Random Matrix Theory (RMT) is capable of making predictions for the spectral fluctuations of a physical system only after removing the influence of the level density by unfolding the spectra. When the level density is known, unfolding is done by using the integrated level density to transform the eigenvalues into dimensionless variables with unit mean spacing. When it is not known, as in most practical cases, one usually approximates the level staircase function by a polynomial. We here study the effect of unfolding procedure on the spectral fluctuation of two systems for which the level density is known asymptotically. The first is a time-reversal-invariant chaotic system, which is modeled in RMT by a Gaussian Orthogonal Ensemble (GOE). The second is the case of chaotic systems in which m quantum numbers remain almost undistorted in the early stage of the stochastic transition. The Hamiltonian of a system may be represented by a block diagonal matrix with m blocks of the same size, in which each block is a GOE. Unfolding is done once by using the asymptotic level densities for the eigenvalues of the m blocks and once by representing the integrated level density in terms of polynomials of different orders. We find that the spacing distribution of the eigenvalues shows a little sensitivity to the unfolding method. On the other hand, the variance of level number Σ2(L) is sensitive to the choice of the unfolding function. Unfolding that utilizes low order polynomials enhances Σ2(L) relative to the theoretical value, while the use of high order polynomial reduces it. The optimal value of the order of the unfolding polynomial depends on the dimension of the corresponding ensemble.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 396, 15 February 2014, Pages 185-194
Journal: Physica A: Statistical Mechanics and its Applications - Volume 396, 15 February 2014, Pages 185-194
نویسندگان
Ashraf A. Abul-Magd, Adel Y. Abul-Magd,