کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
975550 1480172 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficiency characterization of a large neuronal network: A causal information approach
ترجمه فارسی عنوان
خصوصیات کارایی یک شبکه عصبی بزرگ: یک رویکرد اطلاعات علی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی


• We consider a simple network of cortical spiking neurons.
• We use the Bandt and Pompe permutation approach.
• This allows us to characterize the dynamic of the spiking neural activity.
• Investigate the fine temporal “structures” of complex neuronal signals.
• Causal information needed to distinguish dynamical regimes of neuronal ensembles.

When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with a large proportion of inhibitory neurons. Each neuron fires following a Hodgkin–Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of interconnectivity across neurons. More specifically we take into account the fine temporal “structures” of the complex neuronal signals not just by using the probability distributions associated to the interspike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of interconnectivity across neurons grows, inferring the emergent dynamical properties of the system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 401, 1 May 2014, Pages 58–70
نویسندگان
, , ,