کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
979400 | 933345 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Statistical mechanics approach to a reinforcement learning model with memory
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We introduce a two-player model of reinforcement learning with memory. Past actions of an iterated game are stored in a memory and used to determine player’s next action. To examine the behaviour of the model some approximate methods are used and confronted against numerical simulations and exact master equation. When the length of memory of players increases to infinity the model undergoes an absorbing-state phase transition. Performance of examined strategies is checked in the prisoner’ dilemma game. It turns out that it is advantageous to have a large memory in symmetric games, but it is better to have a short memory in asymmetric ones.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 388, Issue 9, 1 May 2009, Pages 1849–1856
Journal: Physica A: Statistical Mechanics and its Applications - Volume 388, Issue 9, 1 May 2009, Pages 1849–1856
نویسندگان
Adam Lipowski, Krzysztof Gontarek, Marcel Ausloos,