کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9891532 1540765 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diet-dependent survival of protein repair-deficient mice
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Diet-dependent survival of protein repair-deficient mice
چکیده انگلیسی
Protein l-isoaspartyl (d-aspartyl) O-methyltransferase (PCMT1) is a protein-repair enzyme, and mice lacking this enzyme accumulate damaged proteins in multiple tissues, die at an early age from progressive epilepsy and have an increased S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy) ratio in brain tissue. It has been proposed that the alteration of AdoMet and AdoHcy levels might contribute to the seizure phenotype, particularly as AdoHcy has anticonvulsant properties. To investigate whether altered AdoMet and AdoHcy levels might contribute to the seizures and thus the survivability of the repair-deficient mice, a folate-deficient amino acid-based diet was administered to the mice in place of a standard chow diet. We found that the low-folate diet significantly decreases the AdoMet/AdoHcy ratio in brain tissue and results in an almost threefold extension of mean life span in the protein repair-deficient mice. These results indicate that the increased AdoMet/AdoHcy ratio may contribute to the lowered seizure threshold in young PCMT1-deficient mice. However, mean survival was also extended almost twofold for mice on a control folate-replete amino acid-based diet compared to mice on the standard chow diet. Survival after 40 days was similar in the mice on the low- and high-folate amino acid-based diets, suggesting that the survival of older PCMT1-deficient mice is not affected by the higher brain AdoMet/AdoHcy ratio. Additionally, the surviving older repair-deficient mice have a significant increase in body weight when compared to age-matched normal mice, independent of the type of diet. This weight increase was not accompanied by an increase in consumption levels, indicating that the repair-deficient mice may also have an altered metabolic state.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Nutritional Biochemistry - Volume 16, Issue 9, September 2005, Pages 554-561
نویسندگان
, ,