کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9952258 1444170 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reducing dense local feature key-points for faster iris recognition
ترجمه فارسی عنوان
کاهش دهنده ویژگی های کلیدی ویژگی های محلی متراکم برای شناسایی سریع عنبیه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Iris recognition has gained much attention in research and commercialization during the last decade. For a large population, the matching time of iris biometric system is much slower than the requirement. More the enrolled population size, higher the identification delay. To combat the delay without compromising accuracy of the system, the proposed method introduces a density-based spatial clustering and key point reduction to be applied on Phase Intensive Local Pattern (PILP) based dense feature extracted from the image. The reduction technique can also work with other dense local features. The reduction method is investigated whether it harms the accuracy of iris biometric system with respect to PILP. Widely used databases: BATH and CASIAv3 are used for experimentation. The technique is found successful in reducing representative key-points, thereby speeding up the match time up to five times. This improvement in 1:1 match-time is significant, and becomes more meaningful in identification for a large population.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 70, August 2018, Pages 939-949
نویسندگان
, , , ,