دانلود مقالات ISI درباره مدل پنهان مارکوف + ترجمه فارسی
Hidden Markov Model
آشنایی با موضوع
مدل پنهان مارکوف (Hidden Markov Model) یک مدل آماری است که در آن سیستم مدل شده به صورت یک فرایند مارکوف با حالتهای مشاهده نشده (پنهان) فرض میشود. به فرایندی تصادفی که احتمالات آینده آن از طریق مقادیر اخیر آن محاسبه میشود، فرایند مارکوف میگویند. این فرایند از روی نام ریاضیدان روسی به نام آندری مارکوف نامگذاری شده است. یک مدل پنهان مارکوف میتواند به عنوان سادهترین شبکه بیزی پویا در نظر گرفته شود.
در مدل عادی مارکوف، حالت به طور مستقیم توسط ناظر قابل مشاهده است و بنابراین احتمالهای انتقال بین حالتها تنها پارامترهای موجود است. در یک مدل پنهان مارکوف، حالت بهطور مستقیم قابل مشاهده نیست، اما خروجی، بسته به حالت، قابل مشاهده است. هر حالت یک توزیع احتمال روی سمبلهای خروجی ممکن دارد؛ بنابراین دنبالهٔ سمبلهای تولید شده توسط یک مدل پنهان مارکوف اطلاعاتی دربارهٔ دنبالهٔ حالتها میدهد. توجه داشته باشید که صفت 'پنهان' به دنبالهٔ حالتهایی که مدل از آنها عبور میکند اشاره دارد، نه به پارامترهای مدل؛ حتی اگر پارامترهای مدل بهطور دقیق مشخص باشند، مدل همچنان 'پنهان' است. مدلهای پنهان مارکوف بیشتر بهدلیل کاربردشان در بازشناخت الگو، مانند تشخیص صدا و دستخط، تشخیص اشاره و حرکت، برچسبگذاری اجزای سخن، بیوانفورماتیک و … شناختهشده هستند.
مدل پنهان مارکوف میتواند فرایندهای پیچیده مارکوف را که حالتها بر اساس توزیع احتمالی مشاهدات را نتیجه میدهند، مدل کند. به طور مثال اگر توزیع احتمال گوسین باشد در چنین مدل مارکوف پنهان خروجی حالتها نیز از توزیع گوسین تبعیت میکنند. علاوه بر این مدل پنهان مارکوف میتواند رفتارهای پیچیدهتر را نیز مدل کند. جایی که خروجی حالتها از ترکیب دو یا چند توزیع گوسین پیروی کند که در این حالت احتمال تولید یک مشاهده از حاصلضرب گوسین انتخاب شدهٔ اولی در احتمال تولید مشاهده از گوسین دیگر به دست میآید.
مدل پنهان مارکوف در حالت گسسته جز خانوادهٔ مسائل ظرفها قرار میگیرد. به طور مثال از ربینر ۱۹۸۹: ظروف x1،x2،x3. . . و توپهای رنگی y1،y2،y3… را در نظر میگیریم، که نفر مقابل دنبالهای از توپها را مشاهده کرده ولی اطلاعی از دنبالهٔ ظرفهایی که توپها از آنها انتخابشده ندارد. ظرف n ام با احتمالی وابسته به ظرف n-1 ام انتخاب میشود و چون به انتخاب ظرفهای خیلی قبلتر وابسته نیست یک فرایند مارکوف است.
با توجه به پارامترهای مدل پنهان مارکوف، میتوانیم مسایلی به صورت زیر را حل کنیم:
Annotation: مدل را داریم به این معنی که احتمالات مربوط به انتقال از حالتی به حالت دیگر و همینطور احتمال تولید الفبا در هر حالت معلوم است. توالی از مشاهدات داده شده، میخواهیم محتملترین مسیری (توالی حالات) که توالی را تولید میکند را پیدا کنیم. الگوریتم viterbi میتواند اینگونه مسایل را به صورت پویا (Dynamic) حل کند.
classification: مدل را داریم، توالی از مشاهدات داده شدهاست، میخواهیم احتمال (کل) تولید شدن این توالی توسط این مدل را (جمع احتمالات تمامی مسیرهایی که این توالی را تولید میکنند) حساب کنیم. الگوریتم forward
Consensus: مدل را داریم، میخواهیم بدانیم محتملترین توالی که توسط این مدل تولید میشود (توالی که بیشترین احتمال را داراست) چیست. الگوریتم Backward
Training: ساختار مدل را داریم به این معنی که تعداد حالات و الفبای تولیدی در هر حالت معلوم است، تعدادی توالی داریم (دادههای آموزش) میخواهیم احتمال انتقال بین حالات و همینطور احتمال تولید الفبا در هر حالت را محاسبه کنیم.
در این صفحه تعداد 602 مقاله تخصصی درباره مدل پنهان مارکوف که در نشریه های معتبر علمی و پایگاه ساینس دایرکت (Science Direct) منتشر شده، نمایش داده شده است. برخی از این مقالات، پیش تر به زبان فارسی ترجمه شده اند که با مراجعه به هر یک از آنها، می توانید متن کامل مقاله انگلیسی همراه با ترجمه فارسی آن را دریافت فرمایید. در صورتی که مقاله مورد نظر شما هنوز به فارسی ترجمه نشده باشد، مترجمان با تجربه ما آمادگی دارند آن را در اسرع وقت برای شما ترجمه نمایند.
مقالات ISI مدل پنهان مارکوف (ترجمه نشده)
مقالات زیر هنوز به فارسی ترجمه نشده اند. در صورتی که به ترجمه آماده هر یک از مقالات زیر نیاز داشته باشید، می توانید سفارش دهید تا مترجمان با تجربه این مجموعه در اسرع وقت آن را برای شما ترجمه نمایند.