کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10160282 | 73 | 2011 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The development of sophisticated three-dimensional (3-D) cell culture microenvironments that recreate some of the complexity of the natural extracellular matrix (ECM) remains a challenging task. Here, the modification of alginate through partial crosslinking with a matrix metalloproteinase (MMP) cleavable peptide (proline-valine-glycine-leucine-isoleucine-glycine, PVGLIG) is described, and its use in the preparation of injectable, in situ crosslinkable hydrogel-like matrices is proposed. PVGLIG-grafted alginates were synthesized by carbodiimide chemistry and characterized. Their biological performance was evaluated by comparing the response of 3-D cultured mesenchymal stem cells (MSCs) to alginate hydrogels containing only cell-adhesion peptides (RGD-alginate) or both peptides (PVGLIG/RGD-alginate). After 1Â week, cells remained essentially round within RGD-alginate, while they exhibited an elongated morphology within PVGLIG/RGD-alginate hydrogels, forming cellular networks. This suggests that cells were able to structurally reorganize the matrix, through enzymatic hydrolysis of PVGLIG residues, overcoming biophysical hydrogel resistance. As shown by gelatine-zymography, MSC presented higher activity of MMP-2 when cultured within alginate functionalized with MMP-sensitive peptide, suggesting that the cell's proteolytic phenotype was modulated by the matrix composition. Additionally, PVGLIG/RGD-alginate hydrogels were clearly degraded in cell culture. Taken together, the results demonstrate that the co-incorporation of MMP-labile peptides in cell-adhesive RGD-alginate hydrogels improved their performance as ECM analogues, providing a more dynamic and physiological 3-D cellular microenvironment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 7, Issue 4, April 2011, Pages 1674-1682
Journal: Acta Biomaterialia - Volume 7, Issue 4, April 2011, Pages 1674-1682
نویسندگان
Keila B. Fonseca, SÃlvia J. Bidarra, Maria J. Oliveira, Pedro L. Granja, Cristina C. Barrias,