کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10231883 | 1373 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Exploring the complexity of pathway-drug relationships using latent Dirichlet allocation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Analysis of cellular responses to diverse stimuli enables the exploration in the complexity of functional genomics. Typically, high-throughput microarray data allow us to identify genes that are differentially expressed under a phenomenon of interest. To extract the meanings from the long list of those differentially expressed genes, we present a new method “pathway-based LDA” to determine pathways/gene sets that are perturbed after exposure to different chemicals. In this study, a pathway is defined as a group of functionally related genes. Specifically, we have implemented a probabilistic Latent Dirichlet Allocation (LDA) model to learn drug-pathway-gene relations by taking known gene-pathway memberships as prior knowledge. We applied the pathway-based LDA model and 236 known pathways in order to determine pathway responsiveness to gene expression data of 1169 drugs. Our method yielded a better predictive performance on pathway responsiveness to drug treatments than the existing methods. Moreover, the pathway-based LDA also revealed genes contributing the most in each pre-defined pathway through a probabilistic distribution of genes. In achieving that, our method could provide a useful estimator of the pathway complexity of a genome.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 53, Part A, December 2014, Pages 144-152
Journal: Computational Biology and Chemistry - Volume 53, Part A, December 2014, Pages 144-152
نویسندگان
Naruemon Pratanwanich, Pietro Lio,