کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10231893 1387 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A local average connectivity-based method for identifying essential proteins from the network level
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
A local average connectivity-based method for identifying essential proteins from the network level
چکیده انگلیسی
► A protein's essentiality is determined by evaluating the relationship between it and its neighbors. ► The number of essential proteins predicted by LAC clearly exceeds that explored by Degree Centrality (DC). ► LAC outweighs the eight previous essential protein discovery methods (Degree Centrality (DC), Neighborhood Component (DMNC), Betweenness Centrality (BC), Closeness Centrality (CC), Bottle Neck (BN), Information Centrality (IC), Eigenvector Centrality (EC), and Subgraph Centrality (SC)) on the results of F-measure and accuracy. ► LAC also outperforms the eight previous essential protein discovery methods on the validation of jackknifing methodology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 35, Issue 3, June 2011, Pages 143-150
نویسندگان
, , , , ,