کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10231893 | 1387 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A local average connectivity-based method for identifying essential proteins from the network level
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
⺠A protein's essentiality is determined by evaluating the relationship between it and its neighbors. ⺠The number of essential proteins predicted by LAC clearly exceeds that explored by Degree Centrality (DC). ⺠LAC outweighs the eight previous essential protein discovery methods (Degree Centrality (DC), Neighborhood Component (DMNC), Betweenness Centrality (BC), Closeness Centrality (CC), Bottle Neck (BN), Information Centrality (IC), Eigenvector Centrality (EC), and Subgraph Centrality (SC)) on the results of F-measure and accuracy. ⺠LAC also outperforms the eight previous essential protein discovery methods on the validation of jackknifing methodology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Biology and Chemistry - Volume 35, Issue 3, June 2011, Pages 143-150
Journal: Computational Biology and Chemistry - Volume 35, Issue 3, June 2011, Pages 143-150
نویسندگان
Min Li, Jianxin Wang, Xiang Chen, Huan Wang, Yi Pan,