کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10265743 | 458642 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Monitoring process transitions by Kalman filtering and time-series segmentation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The analysis of historical process data of technological systems plays important role in process monitoring, modelling and control. Time-series segmentation algorithms are often used to detect homogenous periods of operation-based on input-output process data. However, historical process data alone may not be sufficient for the monitoring of complex processes. This paper incorporates the first-principle model of the process into the segmentation algorithm. The key idea is to use a model-based non-linear state-estimation algorithm to detect the changes in the correlation among the state-variables. The homogeneity of the time-series segments is measured using a PCA similarity factor calculated from the covariance matrices given by the state-estimation algorithm. The whole approach is applied to the monitoring of an industrial high-density polyethylene plant.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 29, Issue 6, 15 May 2005, Pages 1423-1431
Journal: Computers & Chemical Engineering - Volume 29, Issue 6, 15 May 2005, Pages 1423-1431
نویسندگان
Balazs Feil, Janos Abonyi, Sandor Nemeth, Peter Arva,