کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10265743 458642 2005 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monitoring process transitions by Kalman filtering and time-series segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Monitoring process transitions by Kalman filtering and time-series segmentation
چکیده انگلیسی
The analysis of historical process data of technological systems plays important role in process monitoring, modelling and control. Time-series segmentation algorithms are often used to detect homogenous periods of operation-based on input-output process data. However, historical process data alone may not be sufficient for the monitoring of complex processes. This paper incorporates the first-principle model of the process into the segmentation algorithm. The key idea is to use a model-based non-linear state-estimation algorithm to detect the changes in the correlation among the state-variables. The homogeneity of the time-series segments is measured using a PCA similarity factor calculated from the covariance matrices given by the state-estimation algorithm. The whole approach is applied to the monitoring of an industrial high-density polyethylene plant.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 29, Issue 6, 15 May 2005, Pages 1423-1431
نویسندگان
, , , ,