کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10298086 | 539119 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Potential roles for Homer1 and Spinophilin in the preventive effect of electroconvulsive seizures on stress-induced CA3c dendritic retraction in the hippocampus
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
روانپزشکی بیولوژیکی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Electroconvulsive therapy (ECT) remains the treatment of choice for patients with severe or drug-resistant depressive disorders, yet the mechanism behind its efficacy remains poorly characterized. In the present study, we used electroconvulsive seizures (ECS), an animal model of ECT, to identify proteins possibly involved in the preventive effect of ECS on stress-induced neuronal atrophy in the hippocampus. Rats were stressed daily using the 21-day 6Â h daily restraint stress paradigm and subjected to sham seizures, a single ECS on the last day of the restraint period or daily repeated seizures for 10 consecutive days during the end of the restraint period. Consistent with previous findings, dendritic atrophy was observed in the CA3c hippocampal region of chronically stressed rats. In addition, we confirmed our recent findings of increased spine density in the CA1 region following chronic restraint stress. The morphological alterations in the CA3c area were prevented by treatment with ECS. On the molecular level, we showed that the synaptic proteins Homer1 and Spinophilin are targeted by ECS. Repeated ECS blocked stress-induced up-regulation of Spinophilin protein levels and further increased the stress-induced up-regulation of Homer1. Given the roles of Spinophilin in the regulation of AMPA receptors and Homer1 in the regulation of metabotropic glutamate receptors (mGluRs), our data imply the existence of a mechanism where ECS regulate cell excitability by modulating AMPA receptor function and mGluR related calcium homeostasis. These molecular changes could potentially contribute to the mechanism induced by ECS which prevents the stress-induced morphological changes in the CA3c region.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Neuropsychopharmacology - Volume 25, Issue 8, August 2015, Pages 1324-1331
Journal: European Neuropsychopharmacology - Volume 25, Issue 8, August 2015, Pages 1324-1331
نویسندگان
Heidi Kaastrup Müller, Dariusz Orlowski, Carsten Reidies Bjarkam, Gregers Wegener, Betina Elfving,