کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10298790 539652 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی روانپزشکی بیولوژیکی
پیش نمایش صفحه اول مقاله
Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression
چکیده انگلیسی
MicroRNAs (miRNAs) are involved in stress-related pathologies. However, the molecular mechanisms underlying stress resilience are elusive. Using chronic mild stress (CMS), an animal model of depression, we identified animals exhibiting a resilient phenotype. We investigated serum levels of corticosterone, melatonin and 376 mature miRNAs to find peripheral biomarkers associated with the resilient phenotype. miR-16, selected during screening step, was assayed in different brain regions in order to find potential relationship between brain and peripheral alterations in response to stress. Two CMS experiments that lasted for 2 and 7 consecutive weeks were performed. During both CMS procedures, sucrose consumption levels were significantly decreased in anhedonic-like animals (p<0.0001) compared with unstressed animals, whereas the drinking profiles of resilient rats did not change despite the rats being stressed. Serum corticosterone measurements indicated that anhedonic-like animals had blunted hypothalamic-pituitary-adrenal (HPA) axis activity, whereas resilient animals exhibited dynamic responses to stress. miRNA profiling revealed that resilient animals had elevated serum levels of miR-16 after 7 weeks of CMS (adjusted p-value<0.007). Moreover, resilient animals exhibited reciprocal changes in miR-16 expression level in mesocortical pathway after 2 weeks of CMS (p<0.008). A bioinformatic analysis showed that miR-16 regulates genes involved in the functioning of the nervous system in both humans and rodents. Resilient animals can actively cope with stress on a biochemical level and miR-16 may contribute to a “stress-resistant” behavioral phenotype by pleiotropic modulation of the expression of genes involved in the function of the nervous system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Neuropsychopharmacology - Volume 26, Issue 1, January 2016, Pages 23-36
نویسندگان
, , , , , , , , , ,