کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10349457 863612 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation
چکیده انگلیسی
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 185, Issue 7, July 2014, Pages 1886-1892
نویسندگان
, ,