کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10349994 863753 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear regression models, least-squares problems, normal equations, and stopping criteria for the conjugate gradient method
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Linear regression models, least-squares problems, normal equations, and stopping criteria for the conjugate gradient method
چکیده انگلیسی
Minimum-variance unbiased estimates for linear regression models can be obtained by solving least-squares problems. The conjugate gradient method can be successfully used in solving the symmetric and positive definite normal equations obtained from these least-squares problems. Taking into account the results of Golub and Meurant (1997, 2009) [10], [11], Hestenes and Stiefel (1952) [17], and Strakoš and Tichý (2002) [16], which make it possible to approximate the energy norm of the error during the conjugate gradient iterative process, we adapt the stopping criterion introduced by Arioli (2005) [18] to the normal equations taking into account the statistical properties of the underpinning linear regression problem. Moreover, we show how the energy norm of the error is linked to the χ2-distribution and to the Fisher-Snedecor distribution. Finally, we present the results of several numerical tests that experimentally validate the effectiveness of our stopping criteria.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 183, Issue 11, November 2012, Pages 2322-2336
نویسندگان
, ,