کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10350026 863760 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling
چکیده انگلیسی
The validation and parallel implementation of a numerical method for the solution of the time-dependent Dirac equation is presented. This numerical method is based on a split operator scheme where the space-time dependence is computed in coordinate space using the method of characteristics. Thus, most of the steps in the splitting are calculated exactly, making for a very efficient and unconditionally stable method. We show that it is free from spurious solutions related to the fermion-doubling problem and that it can be parallelized very efficiently. We consider a few simple physical systems such as the time evolution of Gaussian wave packets and the Klein paradox. The numerical results obtained are compared to analytical formulas for the validation of the method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 183, Issue 7, July 2012, Pages 1403-1415
نویسندگان
, , ,