کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10350391 | 863840 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fourth-order algorithms for solving local Schrödinger equations in a strong magnetic field
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We describe an efficient numerical method for solving eigenvalue problems associated with the one-body Schrödinger equation or the Kohn-Sham equations in an arbitrarily strong uniform external magnetic field. The eigenvalue problem is solved in real space by using a fourth order, forward factorization of the evolution operator eâεH, which is significantly more efficient than conventional second-order algorithms. In particular, the magnetic field is solved exactly by the decomposition process. The algorithm is applicable to any external potential, in addition to the magnetic field. We envision its primary application in the area of electronic structure calculations of quantum dots.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 171, Issue 3, 1 October 2005, Pages 197-207
Journal: Computer Physics Communications - Volume 171, Issue 3, 1 October 2005, Pages 197-207
نویسندگان
M. Aichinger, S.A. Chin, E. Krotscheck,