کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10524898 | 957763 | 2012 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Reducing bias and mean squared error associated with regression-based odds ratio estimators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Ratio estimators of effect are ordinarily obtained by exponentiating maximum-likelihood estimators (MLEs) of log-linear or logistic regression coefficients. These estimators can display marked positive finite-sample bias, however. We propose a simple correction that removes a substantial portion of the bias due to exponentiation. By combining this correction with bias correction on the log scale, we demonstrate that one achieves complete removal of second-order bias in odds ratio estimators in important special cases. We show how this approach extends to address bias in odds or risk ratio estimators in many common regression settings. We also propose a class of estimators that provide reduced mean bias and squared error, while allowing the investigator to control the risk of underestimating the true ratio parameter. We present simulation studies in which the proposed estimators are shown to exhibit considerable reduction in bias, variance, and mean squared error compared to MLEs. Bootstrapping provides further improvement, including narrower confidence intervals without sacrificing coverage.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 12, December 2012, Pages 3235-3241
Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 12, December 2012, Pages 3235-3241
نویسندگان
Robert H. Lyles, Ying Guo, Sander Greenland,