کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10536952 962647 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The protein-solvent glass transition
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
The protein-solvent glass transition
چکیده انگلیسی
The protein dynamical transition and its connection with the liquid-glass transition (GT) of hydration water and aqueous solvents are reviewed. The protein solvation shell exhibits a regular glass transition, characterized by steps in the specific heat and the thermal expansion coefficient at the calorimetric glass temperature TG ≈ 170 K. It implies that the time scale of the structural α-relaxation has reached the experimental time window of 1-100 s. The protein dynamical transition, identified from elastic neutron scattering experiments by enhanced amplitudes of molecular motions exceeding the vibrational level [1], probes the α-process on a shorter time scale. The corresponding liquid-glass transition occurs at higher temperatures, typically 240 K. The GT is generally associated with diverging viscosities, the freezing of long-range translational diffusion in the supercooled liquid. Due to mutual hydrogen bonding, both, protein- and solvent relaxational degrees of freedom slow down in paralled near the GT. However, the freezing of protein motions, where surface-coupled rotational and librational degrees of freedom are arrested, is better characterized as a rubber-glass transition. In contrast, internal protein modes such as the rotation of side chains are not affected. Moreover, ligand binding experiments with myoglobin in various glass-forming solvents show, that only ligand entry and exit rates depend on the local viscosity near the protein surface, but protein-internal ligand migration is not coupled to the solvent. The GT leads to structural arrest on a macroscopic scale due to the microscopic cage effect on the scale of the intermolecular distance. Mode coupling theory provides a theoretical framework to understand the microcopic nature of the GT even in complex systems. The role of the α- and β-process in the dynamics of protein hydration water is evaluated. The protein-solvent GT is triggered by hydrogen bond fluctuations, which give rise to fast β-processes. High-frequency neutron scattering spectra indicate increasing hydrogen bond braking above TG.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics - Volume 1804, Issue 1, January 2010, Pages 3-14
نویسندگان
,