کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10564658 970853 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy
چکیده انگلیسی
Dislocations were thought the weakest link in natural fibres which had negative effects on the tensile strength of the fibres. This paper presents a systematic approach to examine the dislocations in hemp fibres firstly by optical microscopy (OM) and field emission scanning electron microscopy (FE-SEM) for the morphologies of the dislocations and then by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) for the crystallinity index and hydrogen bonds and main chemical compositions of the dislocation regions in hemp fibres. The results showed that (i) dislocations resulted in fibril distortion and intensified amorphous features of hemp fibres; (ii) crystallinity index reduced from 48.4% examined by FTIR and 56.0% by XRD determination for hemps without dislocations to 41.3% for the dislocation regions; (iii) the FT-IR spectra showed much higher absorbance of hemp fibres without dislocations which was two times that of dislocation regions across the whole range of wavenumbers; (iv) deconvolving spectra in O-H stretching region showed a lower number of hydrogen bonds, weaker inter- and intra-molecular hydrogen bonding in the dislocation regions, indicating a possible decrease in the tensile strength of hemp fibres; (v) the FT-IR spectra indicated the removal of the hemicelluloses in dislocation regions and hence possible loss of lignin because of disappearing the bands at 1368 cm−1, 1363 cm−1 and 1506 cm−1; (vi) the spectra in fingerprint region gave rise to the ratio of syringyl (S)/guaiacyl (G) of 0.9 in dislocation regions which was lower than that (1.1) of hemp without dislocation, this means a significant reduction of lignin content and a higher cellulose content in the dislocation regions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Vibrational Spectroscopy - Volume 55, Issue 2, March 2011, Pages 300-306
نویسندگان
, ,