کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10608884 | 984411 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A study on phase morphology and surface properties of polyurethane/organoclay nanocomposite
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آلی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, polyurethane/organically modified layered silicate (organoclay) nanocomposites were prepared through in situ polymerization in the presence of organoclay. Phase morphology of the polyurethane/organoclay nanocomposite was investigated by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The results suggest that the inter-domain repeat distance decreased with the introduction of organoclay. The organoclay has a more significant effect on the inter-domain repeat distance at a low hard segment content. Also with the increase of the hard segment, the inter-domain repeat distance and domain size increased markedly. The size of hard domain of the polyurethane was found to be in the range of 12-32Â nm in this case, and it keeps nearly unchanged with the clay content. It is suggested by AFM phase imaging technique that the hard domain can self-organize further to form spherical aggregates. The introduction of clay into the polyurethane matrix resulted in the decrease in the size of the spherical aggregates from â¼800Â nm to â¼500Â nm, indicating clay has an important effect on the aggregation behavior of hard domains. The effect of clay on the surface energy was examined by means of AFM and goniometry techniques. The results obtained by two methods are consistent, i.e., with the increase of clay content, the surface energy decreased due to the effect of organic modifier.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Polymer Journal - Volume 41, Issue 2, February 2005, Pages 259-266
Journal: European Polymer Journal - Volume 41, Issue 2, February 2005, Pages 259-266
نویسندگان
M. Song, H.S. Xia, K.J. Yao, D.J. Hourston,